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Protective effect of Huperzine A in 
induced cytokine storm in mice   
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Abstract 
Background: Life-threatening systemic inflammatory syndromes can be caused by various infections, 
autoimmune and cancerous diseases, genetic disorders, and certain therapeutic approaches. Such 
situations are frequently referred to as "cytokine storms." If detected too late and treated insufficiently, 
cytokine storm and the ensuing systemic reaction can proceed from vague clinical symptoms to multi-
organ failure. TNF-α, IL-1β, and IL-6 are the three main participants in the interplay of the cytokine 
storm and the most major proinflammatory cytokines of the innate immune response. Objective: 
evaluate Huperzine A protective effect on cytokine storm initiated by lipopolysaccharides in Swiss 
Albino mice. Method: Five groups, each consisting of ten mice (n=10), were created by randomly 
selecting 50 male Swiss albino mice. The Control group was neither induced nor treated; the Model 
group was injected with a single intraperitoneal dose (5 mg/kg) of Lipopolysaccharides solution and 
left untreated. The Vehicle group receive1% Dimethyl sulfoxide solution, the Methylprednisolone 
group received 50 mg/kg/day Methylprednisolone solution, and the Huperzine A group received 
0.2mg/kg/day Huperzine A solution; all use administered by single intraperitoneal injection for three 
sequential days then induced by single intraperitoneal injection of Lipopolysaccharides at (5 mg/kg) 
dose. Results: After administering LPS, the non-treated groups' IL-1β, IL-6, and TNF-α serum levels 
were distinctly elevated (p < 0.001) with histopathological changes in the lung compared to the control 
group. Conclusion: Huperzine A demonstrates a protective effect against cytokine storm induced in 
Swiss Albino mice using LPS by suppressing serum levels of IL-1β, IL-6, and TNF-α and improving 
the lung histopathological changes.  
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Introduction 
arious treatments, infections, 

malignancies, autoimmune disorders, and 
monogenic disorders can bring on the 
potentially lethal systemic inflammatory 
state known as a cytokine storm. It is 
identified by acute overproduction, 
uncontrolled pro-inflammatory cytokine 
release, and immune-cell hyper activation 
[1].  

This occurrence has been linked to the 
recently identified SARS-CoV-2 
coronavirus causing the coronavirus 
disease 2019 (COVID-19). The prognosis 
and mortality rate of COVID-19 patients is 
thought to be worsened by cytokine 
storms[2]. 

 

 

The innate immune system's neutrophils, 
macrophages, and natural killer cells have 
been linked to the pathophysiology of 
cytokine storms. By using PRRs to identify 
pathogens, these cells trigger a sequence of 
activation processes that cause the release of 
several pro-inflammatory cytokines and 
activate the adaptive immune system [3].  

Depending on the underlying cause and 
treatments, cytokine storms might start at 
different times and last longer [4]. Pro-
inflammatory cytokines, like TNF-α, IL-1β, 
and IL-6, play a key role in inflammation [5].  
During cell injury, infection, and 
inflammation, Monocytes, macrophages, 
and non-immune cells such as fibroblasts 
and endothelial cells are the main producers 
of IL-1β [6]. Interleukin IL-6, which possesses 
pleiotropic and redundant activity, aids in  
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the host's defense against short-term environmental 
stress; however, it has also been demonstrated that 
dysregulated continuous IL-6 production plays a 
pathogenic role in many autoimmune and chronic 
inflammatory illnesses [7]. One of the most significant 
innate immune system cytokines that promote 
inflammation is TNF-α. Monocytes and macrophages 
mostly produce it, though T and B lymphocytes can also 
release it [8]. Additionally, it has a significant role in both 
acute and long-term systemic inflammatory reactions 
and in enhancing the production of other cytokines and 
chemokines. Cytokine release syndrome can be brought 
on by dysregulated TNF- signaling [9].  

According to recent research, increasing 
parasympathetic response, whether achieved through 
the direct triggering of the vagus nerve or using 
acetylcholine esterase inhibitors (AChEIs), modifies the 
immune system's response and regulates inflammation 
through CAP [10, 11]. The parasympathetic nervous system 
controls inflammation through the cholinergic anti-
inflammatory pathway [12]. Later, it was discovered that 
the "cholinergic anti-inflammatory pathway" key target 
for preventing dendritic cells and macrophages from 
producing pro inflammatory cytokines was the 7a 
nicotinic ACh receptor (7nAChR). Acetylcholine then 
activates the 7 nicotinic acetylcholine receptors (7 
nAChRs) found on immune cells such as macrophages, 
dendritic cells, lymphocytes, neutrophils, and microglia 
[13]. Acetylcholine inhibits the NF-kB pathway by 
upregulating the expression of IRAK-M, which can 
inhibit the phosphorylation of IκB [14]. When 7nAChRs 
are activated, JAK2 is recruited, and STAT3 is 
phosphorylated. STAT3 then moves to the nucleus and 
binds to DNA rather than NF-B, limiting the synthesis of 
TNF-α and other cytokines [15]. Additionally, 
acetylcholine blocks macrophage NLRP3 inflammasome 
pathways, which reduces the production of IL1β [16].   

 In this context, the capacity of huperzine A to 
regulate a produced hyperinflammatory cytokine 
storm was investigated. Huperzine A is a 
competitive and reversible acetylcholinesterase 
inhibitor [17]. That was extracted from the dried herb 
of Chinese clubmoss Huperzia serrata (family 
Lycopodiaceae) [18]. In traditional Chinese 
medicine, the extracts or pure ingredients from 
Huperzia serrata have been used for thousands of 
years to treat various conditions, including 
schizophrenia, inflammation, edema, 
organophosphate poisoning, pain, and memory 
loss [19]. Huperzine A was approved for use in 
Alzheimer's treatment in China. 

Furthermore, it's a recognized dietary supplement for 
improving memory in the US. Huperzine A has attracted 
considerable interest in clinical use because it possesses 
higher selectivity for acetylcholinesterase than 

peripheral butyrylcholinesterase. Consequently, it may 
provoke lower toxicity and have fewer patient side 
effects [20]. 

MATERIAL AND METHODS 

Animals 
Fifty pathogen-free male Swiss Albino mice (age 7-8 
weeks and weighing 25-30 gm) were housed in wood 
chip-bedded plastic cages. Throughout the study, the 
animals were kept in the animal house at AL-Nahrain 
University/College of Medicine in a particular, non-
pathogenic environment with appropriate food and 
water in a 12-hour light-dark cycle and a temperature 
regulated to (15°C -21°C). The mice were allowed to 
adjust to their new environment a week before the work 
began[21].  

Chemicals and drugs 
Huperzine A and Methylprednisolone were obtained as 
a powder from Hangzhou Hyper Chemicals Limited 
Company (china). LPS lyophilized powder from Sigma 
Aldrich Chemical Company (USA).  

Chem-lab NV supplied dimethyl sulfoxide (DMSO) in 
Belgium. Chloroform 99% provided by Loba Chemie 
Pvt. Ltd, India. Mouse IL-1β, IL-6, and TNF-α ELISA kits 
were obtained from SUN LONG Biological Technology 
Co. Ltd, China. 

Induction of Cytokine storm 
The induction of cytokine storm was done by single IP 
injection from LPS solution that was previously 
prepared by thoroughly mixing 10 mg of LPS 
lyophilized powder with 10 ml of normal saline in a 
sterile glass bottle for 15 minutes until completely 
dissolved. 

Preparation of drugs 
Huperzine A and Methylprednisolone solution was 
prepared by being dissolved in 1%DMSO and diluted 
with distal water to the desired volume. 

Experimental design 
Five groups of ten mice (n=10) were created by randomly 
selecting 50 male Swiss albino mice. AH (control) group, 
apparently healthy mice, were neither induced nor 
treated; LPS (model) group was induced by a single IP 
injection of LPS solution at (5 mg/kg) dose and left 
without treatment; DMSO (vehicle) group receive1% 
Dimethyl sulfoxide solution by single daily IP injection 
for three sequential days then injected by LPS solution at 
5mg/kg dose as a single dose on day three, MA group 
received Methylprednisolone solution at (50 mg/kg) 
dose by single daily IP injection for three sequential days 
then injected by LPS solution at 5mg/kg dose as a single 
dose on day three, HA group received Huperzine A 
solution at (0.2mg/kg) dose by single daily IP injection 
for three sequential days then injected by LPS solution at 
5mg/kg dose as a single dose on day three. 
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Pro-inflammatory cytokines evaluation  
The blood was collected from the jugular vein under 
light chloroform anesthesia after 48 hours of LPS 
induction. Subsequently, blood was centrifuged at 3000 
rpm for 20 minutes, and at -20°C, the serum was kept. 
The enzyme-linked immune-sorbent assay (ELISA) was 
used to quantitatively measure the levels of tumor 
necrosis factor-alpha (TNF-alpha), interleukin one beta 
(IL-1β), and interleukin six (IL-6 in the serum. Following 
the directions from the manufacturer, the reader was 
prepared to read at 450 nm within 5 minutes. 

Histopathological evaluations 
All mice were sacrificed and immediately performed an 
autopsy to obtain lungs using fine scissors and forceps, 
then preserved in 10 %Formalin solution. Dehydration, 
paraffin embodiment, and deparaffinization were done 
on the samples. Lung samples were cut into sections and 
dyed with Hematoxylin and eosin (H&E).  

The histopathological changes were assessed by 
examining and scoring the slides. Experienced 
histopathologists tested the tissue sections in a blinded 

manner, and results were evaluated according to a 
scoring system ranging from 0-3 (0=normal; 1=mild; 
2=moderate; 3=sever). 

Statistical analysis 
The Statistical Program for the Social Sciences (SPSS) 
software was used to gather, chart, and analyze all data. 
The findings were using the mean and standard 
deviations. A one-way analysis of variance (ANOVA) 
with a 2-tail (t-test) test was performed comparing 
groups. For P values of 0.05, 0.01, and 0.001, the 
significance levels were set to significant, highly 
significant, and very significant [22]. 

Results 

The effect on pro-inflammatory cytokines 
According to the results of the current study, the LPS 
model and DMSO vehicle groups had significantly 
higher serum levels of IL-1β, IL-6, and TNF-α than the 
AH group (P <0.001). However, no significant difference 
was noticed between the LPS model and DMSO vehicle 
groups (P >0.05). Table (1) shows the details.  

Table (1) shows the study group's serum IL-1β, IL-6, and TNF-α levels. 

Parameters 
Groups  mean ± stander Deviation (SD) in (pg/ml)
AH (control) LPS (induction) DMSO (vehicle)

IL-1β 7.5±1.7 a 36.1±2.6 b 32.2 ±5.3 b
IL-6 13.8±3 a 77.8±5.1 b 72.9±5.5 b
TNF-α 21.7±5.7 a 87.4±6.5 b 83.7± 5.8 b

Letters are used to express comparison; dissimilar letters 
signify a substantial difference. A similar letter indicates 
that there are no notable differences. Huperzine A and 
Methylprednisolone pre-treatment, in contrast, showed 
a very high significant reduction in IL-1β, IL-6, and TNF-

α levels in the serum post-LPS administration in MA and 
HA groups (P <0.001) as compared to LPS model group. 
The MA group IL-1β, IL-6, and TNF-α serum levels were 
comparable to that of the MA group; Table (2) illustrates 
these results.  

Table (2) shows the study group's serum IL-1β, IL-6, and TNF-α levels. 

Parameters 
Groups mean ± stander Deviation (SD) in (pg/ml)
LPS (induction) MA (Methylprednisolone) HA (Huperzine A)

IL-1β 36.1±2.6 b 18±2.6 c 16.7±2.9 c
IL-6 77.8±5.1 b 43±4.5 c 44.6±5.5 c
TNF-α 87.4±6.5 b 25.6±5.1 c 26.5±5.6 c

Letters are used to express comparison; dissimilar letters 
signify a substantial difference. A similar letter indicates 
that there are no notable differences. 

The effect on the histopathological score 
In the current study, the LPS model and DMSO vehicle 
groups showed significant changes and damage in the 
lung section, such as intra-alveolar congestion and 
hemorrhage, proteinaceous material, severe 

inflammatory cells infiltration, and destruction in the 
alveolar septa and diffuse alveolar damage with 
emphysematous changes in compared with the AH 
group (P <0.001), as shown in figure (1).   

These results suggest that the administration of LPS and 
DMSO led to significant pathological changes and 
damage in the lung tissues, as evidenced by the observed 
histological alterations

Figure 1: Lung histological section of Control group (A) (x20), LPS group (B) (x20), and DMSO group (C) (x20). 
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Huperzine A and Methylprednisolone both elicit a 
significant reduction in histopathological score with 
mild congestion in alveolar capillaries and mild 
interstitial inflammatory cells infiltration as compared to 
the LPS model group (P <0.001), as shown in figure (2). 

Both Huperzine A and Methylprednisolone 
demonstrated a beneficial effect in reducing 
histopathological scores, suggesting a potential 
protective or therapeutic impact on lung tissue 
compared to the LPS model group

Figure 2: Lung histological section of LPS group (B) (x20), Huperzine A group (D) (x40), and Methylprednisolone group (E) (x40). 

Discussion 
Lipopolysaccharides (LPS) are crucial glycolipids that 
make up the outer membrane of Gram-negative bacteria 
[23]; they maintain the bacterial cell structural integrity 
and act as a permeability barrier [24]. The LPS molecule is 
a potent stimulator of the innate immune system; 
typically, it's an exogenous agent that unleashes 
cytokine storm. TLR4, which is present on the surface of 
immune cells [25, 26], recognizes The LPS molecule; this 
recognition will lead to a series of intracellular processes 
to activate NF-KB and MAPK kinase pathways that 
subsequently lead to an induction of many 
proinflammatory cytokines and chemokines.  

Our results are similar to prior research that showed that 
LPS significantly raised serum levels of IL-1β, IL-6, and 
TNF-α at a dose of 5 mg/kg compared to the control 
group [27, 28]. In contrast to the LPS model group, pre-
treatment with 0.2 mg/kg Huperzine A significantly 
reduced serum IL-1β, IL-6, and TNF-α levels. Zhang et 
al. and Cai et al. [29, 30] also found similar results to the 
present study. Huperzine A exhibited protective effects 
by inhibiting AChE activity, accumulating acetylcholine, 
and activating the cholinergic anti-inflammatory 
pathway [31, 32]. Acetylcholine mainly signals through α7 
nAChRs expressed in neural and immune cells [33].  

The activation of α7nAChR has no impact on the 
expression of anti-inflammatory cytokines [34], but it 
suppresses the production of proinflammatory 
cytokines [35, 36]. Huperzine A's cholinergic anti-
inflammatory properties prevent the translocation of the 
NF-κB component p65 [37, 38].  Furthermore, LPS can 
induce the activation of other inflammatory mediators, 
such as the synthesis of Nitric oxide (NO) and 
prostaglandin E2 (PGE2) that further contribute to the 
inflammatory process. Huperzine A suppresses the 
expression of inducible nitric oxide synthase (iNOS), 

COX-2, and their related inflammatory mediators NO 
and PGE2 through the inhibition of p38 and ERK1/2 
phosphorylation, which are key players in the MAPK 
pathway [39]. The common condition known as acute 
respiratory distress syndrome (ARDS) still has a high 
fatality rate in critical care medicine. Direct lung injury 
causes of ARDS include pneumonia and aspiration and 
extrapulmonary diseases that affect the lung secondarily 
(such as sepsis and pancreatitis) [40].  

When lipopolysaccharides (LPS) are injected 
intraperitoneally, this causes an excessive formation of 
reactive oxygen species (ROS) and the release of 
inflammatory cytokines into the systemic circulation. 
That leads to indirect lung injury with interstitial edema 
and vascular endothelium damage. Recently, Li R et al., 
[41, 42] have shown that the cholinergic anti-inflammatory 
pathway plays a role in suppressing the inflammatory 
response in acute lung damage. According to Mohseni‐
Moghaddam et al. [43], Acetylcholinesterase activity, 
oxidative stress, and inflammation are all inhibited by 
huperzine A. Nitrite and malondialdehyde (MDA) 
levels decreased while catalase and superoxide 
dismutase (SOD) activities enhanced. 

 The reduced oxidative stress could decrease caspase-1 
activity, NLRP3 overexpression, and IL-1β release. 
Additionally, prevent ROS-mediated NF-κB pathway 
activation [44, 45]. One of the first cells to respond to LPS is 
the endothelial cell, which activates TLR4 to produce 
proinflammatory cytokines, chemokines, and adhesion 
molecules like VCAM-1 and ICAM-1. These interactions 
enable leukocyte recruitment into inflamed tissues, 
impairing organ function. In addition, LPS induces 
endothelial cell apoptosis and promotes NO production, 
aids in vasodilatation, and raises endothelial 
permeability, which results in endothelial barrier 
damage . Yang et al. [46] found that huperzine A reduces 
oxidative stress, inflammatory cytokine production, and 
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caspase-3 activity to protect against Hepatic Ischemia-
Reperfusion injury in mice. Ruan et al. mention that 
Huperzine A suppresses endothelial cell apoptosis and 
inhibits endothelial cell senescence by increasing 
endothelial cell proliferation. 

CONCLUSION 
Huperzine A demonstrates a protective effect against 
cytokine storm induced in Swiss Albino mice using LPS 
by suppressing serum levels of IL-1β, IL-6, and TNF-α 
and improving the lung histopathological changes.   
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